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The transformation rj —» 7r°, which is thought to play a dominant role in the decay mode t] —•» 7r+x~7r°, 
is examined in the light of unitary symmetry and several different models for rj decay. Beside the models 
of Gell-Mann, Sharp, and Wagner (GSW), and of Barrett and Barton (BB), these include the strong 
coupling of pseudoscalar and vector meson octets with the unitary singlet vector meson <p, and the electro­
magnetic coupling of pseudoscalar and vector mesons. Group-theoretical methods are used to confirm 
that the contributions of all but one of the lowest order diagrams on the GSW model cancel one another. 
The same methods show that the cancellations in lowest order are not as serious for the BB model, and are 
nonexistent for models involving the <p meson. 

INTRODUCTION 

IN the unitary symmetry scheme of Gell-Mann and 
Ne'eman,1 the particles of a given unitary multiplet 

can be classified not only by means of the isotopic-spin 
subgroup of U(3), but also by two other £7(2) sub­
groups of U(3).2"6 These alternative classifications have 
proved to be very useful tools for predicting relations 
between strong-interaction processes,4,5 and for studying 
the electromagnetic properties of elementary particles.5,6 

Their usefulness can further be illustrated by a study 
of various models for the process -q —> ir°. 

Recent experimental data7 appear to confirm the pro­
posal of Barton and Rosen8 that the decay t\ —* T+TT~T() 

proceeds mainly through a single-pion intermediate 
state. While the precise mechanism by which the 77 trans­
forms into a neutral pion has no effect on the spectrum 
of the final state, it is of considerable interest if we wish 
to relate the properties of rj —»7r+7r-7r° to those of other 
7j decay modes. In their original work, Barton and Rosen 
make use of the model of Gell-Mann, Sharp, and 
Wagner,9 according to which all modes of t\ decay are 
dominated by a strong primary dissociation into two 
virtual vector mesons; the single-pion intermediate 
state is then reached by means of electromagnetic inter­
actions. Further investigation10 has revealed, however, 
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that, under the assumption of unitary symmetry, the 
contributions to the matrix element (77 J 7r°> from many 
of the lowest order diagrams cancel one another. 
Because of this result, it becomes worthwhile to consider 
the transformation rj —> 7r° on the basis of other models 
for 77 decay. 

One alternative to the GSW model is the model of 
Barrett and Barton.11 These authors assume that the 
t] undergoes a strong primary dissociation into baryon-
antibaryon pairs; the rate for rj —» 2Y can be calculated 
in the same way as the rate for 7r° —> 2y, and 77 —> 7r+7r_7r° 
appears to be dominated by the single pion intermediate 
state.12 Another model can be obtained by coupling 
the octets of pseudoscalar and vector mesons with the 
unitary singlet vector meson <p.ls Also, because the 
quantum numbers of the14 rj require its decay modes to 
proceed via electromagnetic interactions, it may not 
be unreasonable to assume that the r? undergoes a 
primary dissociation into a vector meson and a photon. 

Here we shall show that the cancellations among the 
lowest order diagrams of the GSW model can be 
established by the group theoretical methods mentioned 
above. I t is a relatively simple matter to apply these 
methods to the other models in order to find out where 
cancellations occur, and which diagrams can be ex­
pected to dominate rj —> 7r°. 

In the next section we show how the various classi­
fication schemes for particles in a given unitary multiplet 
can be obtained, and then derive expressions, in unitary 
spin space, for electromagnetic and strong interactions. 
The lowest order diagrams for rj —> w° are considered in 
the third section, and the conclusions to be drawn from 

"Barbara Barrett and G. Barton, Phys. Letters 4, 16 (1963), 
and Clarendon Laboratory, Oxford 1963 (unpublished). These 
papers are referred to as BB in the text. 

12 Barbara Barrett and G. Barton (to be published). These cal­
culations are based on electromagnetic mass differences, rather 
than on the diagrams of Figs. 2(c) and 2(d) below. 

13 J. J. Sakurai, Phys. Rev. Letters 9, 472 (1962). Throughout 
this paper we use cp to denote the unitary singlet vector meson, 
and 03 to denote the T = 0 member of the octet of vector mesons. 
The question whether the observed <p, a are really admixtures of 
different unitary multiplets [J. J. Sakurai (to be published)] is 
not relevant here. 
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TABLE I. Classification of pseudoscalar mesons as 
eigenstates of (L2,LS,YL). 

1 
0 
0 

- 1 

Eigenstates 

K+, h(*°+y/h), -K-

this analysis are presented in Sec. 4. Useful mathe­
matical identities are discussed in the Appendix. 

MATHEMATICAL FORMULATION 

I t is convenient to adopt Okubo's formalism15 for 
unitary symmetry. The generators A/ of infinitesimal 
transformations in U(3) obey the commutation rules 

[Af,A/] = dfA„a-8M^ 

and the unitary restriction 

(Afy=A„'. 

They can be divided into three sets6: 

T+=-AJ, 

with 

L+=-A,\ 

with 

K+=-Ai, 

with 

T-=-At\ r 3 = i ( ^ 2 2 - ^ i 1 ) , 

T±=Ti±iTz; 

L-=-Az\ Lg=iU»»-i4i1), 

L±=LizkiL2', 

K-=-Af, K,= \(Ai-Ai), 

(1) 

(2) 

YT = Az\ 

(3) 

YL = A?, 

(4) 

YK = AX\ 

(5) 
K± — KizhiKz j 

each containing an angular-momentum type operator 
and a corresponding hypercharge. The first set (3) is 
identified with isotopic spin and the usual hypercharge 

YT=(B+S), (6) 

where B denotes baryon number and S strangeness. We 
use only those representations U(fi,f2,fz) of 27(3) for 
which15-16 

^ 1
1 + ^ 2

2 + ^ 3 3 = / i + / 2 + / 3 - 0 ; (7) 

with the aid of (6) and (7), we can then make the 
following identifications: 

Lz = i(Q+YT), YL=(Q-YT), (8) 

Kz = i(2YT-Q), YK=-Q, 

where Q is the electric charge operator. 

15 S. Okubo, Progr. Theoret. Phys. (Kyoto) 27, 949 (1962). 
16 S. Okubo, Phys. Letters 4, 14 (1963). In this paper Okubo 

points out the equivalence between representations U( fijijz) of 
U(3), for which / i + / 2 + / 8 = 0 and representations of 527(3). 

The pseudoscalar mesons form a basis for the repre­
sentation 27(1,0, —1) and can be classified as eigen­
states of either (T 2 , r 3 ,F r ) , ( L 2 , L 3 , F L ) , or (K\KhYK); 
the classifications according to the second and third 
sets of operators are shown in Tables I and I I . Corre­
sponding classifications for vector mesons and meta-
stable baryons are obtained from the substitutions 

where13 
/ - f-+M, 

/ -

\w+" 
'TT 0 

7T~ 

1 V 
\K+ 
\KQ 

\KQ 

[K-J 

> g = 

\ P + ] 
P° 
P 
CO 

K*+ 
Z*° 
i£*° 

[K*~ 

, M= 

2+1 
2° 
2 - ! 

A j 

P 
n 

S° 
E_ 

(9) 

(10) 

In this notation the electromagnetic currents of 
baryons and mesons are17 

J (M) = MQM= -MA i W , 

J(,f)=fQf - - / A 1 / , 
J(g)=§Qg =-§A^g. 

(ID 

Each one behaves under the transformations of16 SU(3) 
as the Ril component of a traceless tensor Rf. The 
current J(fg) describing the electromagnetic interac­
tion of vector mesons with pseudoscalar mesons is as­
sumed to behave in the same way; however, because TT° 
is even under charge conjugation while p° is odd,14 its 
form is different from the currents in (11), viz, 

J(fg) = lgtA}}Ai*+AMxl-iA-A2f, (12) 
where 

A-.A^AjA^tf+ft+tf+lfa-fz) (13) 

for a representation U(fi,f2,fz). With the aid of the 
commutation relations (1) and the identity (see the 
Appendix), 

AfA^AiA-iQ+aQ?-**), (14) 

J (fg) can be rewritten as 

J(fg) = lg\:iA:A+^-2K^f. (15) 

This expression leads to the same relations among the 

TABLE II. Classification of pseudoscalar mesons as 
eigenstates of (K2,Kz, YR) . 

K Eigenstates 

1 i x - -K-
0 1 K°, i ( -7 r °+V^) ,K° 
0 0 U^°+V) 

-1 i ( i£ + , -*+) 

17 Throughout this paper, the space-time structure of inter­
actions is suppressed. 
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( C ) 

P* 

(d) 

-7T Tj ' 

(e) ( f ) 
FIG. 1. Lowest-order diagrams for rj —> ir° based on the 

model of Gell-Mann, Sharp, and Wagner (Ref. 9). 

coupling constants for processes g —* / + T as are given 
by Okubo.16 

Equations (11) and (15) show clearly that the electro­
magnetic interactions are invariant under rotations of 
K spin.5 This fact can be used to determine the form 
of the effective current J(sg) corresponding to the 
transformations 

p—>7, <a->y. (16) 

I t can be seen from Table I I and Eqs. (9) and (10), 
that the only K-spin scalar which can be formed from 
the vector mesons is §(v3p0+w): hence, J(sg) must be 
proportional to J(V3p°+a>). 

To express this result formally, we introduce a spurion 
s with the same spin, parity and charge conjugation 
parity as the w°. Under the transformations of SU(3), 
s behaves like an octet with only one nonvanishing 
component, namely, the iT-spin zero component. The 
effective current for (16) can now be written in the 
same form as J(fg): 

J(sg) = \gl\A:A+iQ*--2¥t-]s. (17) 

The strong interactions of baryons and pseudoscalar 
mesons are expressed in the usual trilinear form. To 
obtain their structure in 527(3) space, we note that the 
outer product of the baryon octet with the antibaryon 
octet contains two distinct octets, which may be 
taken as 

MA/M and M[_A1»A*-lb/A:A'lM. 

The most general, SU(3) invariant, interaction will 
then be a linear combination of the inner products of 
these octets with the pseudoscalar meson octet. 

In the discussion of the next section, we shall need 
only those terms containing the rj and 7r° fields. They are 

H(vM) = n^xAz*+p(Ax*At-iA:A)lM (18) 
and 

H(w°M)= (ifi/TfyttZaiAJ-Af) 

+ / 3 ( ^ X ^ I X - ^ A 2 ^ 2 X ) ] M . (19) 

By means of Eqs. (3)-(9) and identities similar to (14) 
(see the Appendix), these can be rewritten as 

H(vM) = nataYT+P(iA:A+$YT 

+ i F r 2 - T 2 ) ] M , (20) 
H (TTW) = (7r°/v2)ilf[- 2aTz 

+ / 3 ( - 3 T 3 + i r 3 F r + L 2 - K 2 ) ] i k r . (21) 

The strong interactions of pseudoscalar and vector 
mesons can be treated exactly as above, and the terms 
we shall need are 

H(Vg) = vg\:yYT+daA'A+lYT+iY^-T^g, (22) 

#(AHfr0/V2)<7[-2YT3 
+ S ( - 3 r 3 + i r 3 F H - L 2 ~ K 2 ) ] g . (23) 

For convenience, we take the constants a, 0, 7, 8 to 
be real, so that the operators standing between M and 
M in (20) and (21) and between g and g in (22) and (23) 
are Hermitian. 

THE TRANSFORMATION r\ ->rc° 

The lowest order diagrams for 77 —> 7r° arising from the 
GSW model are shown in Fig. (1), and those arising 
from the BB model are shown in Fig. (2). In the first 
three diagrams of Fig. (3), the r] dissociates into a vector 
meson and a photon; the second two diagrams arise 

A° r 

(a) (b) 

v \r\ 1 7r 

(c ) 

5" ? 
77. fy\ J - 7 T 77 (y\ J 770 

S* 2* 

(d) <e) 
FIG. 2. Lowest-order diagrams for t\ —»ir° based on the 

model of Barrett and Barton (Ref. 11). 
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P OJ 

/ r 
( a ) ( b ) 

'—O—' 
r 

( C ) 

* <P p 

a> p w 

FIG. 3. Lowest-order diagrams for rj —» r0 involving 
the unitary-singlet vector meson <p. 

from the strong coupling of <p with the octets of pseudo-
scalar and vector mesons. 

Diagrams 3(a), 3(b), and 1(a), 1(b) 

From the point of view of unitary symmetry, the 
simplest diagrams to consider are those of Figs. 3 (a) and 
3 (b). The interactions at the rj and ir° vertices are both 
proportional to J(fg) [Eqs. (12) and (15)], and hence, 
the sum of the matrix elements for these diagrams is 
proportional to 

W(fg)J(fg)\A 
= Un\lkA:A+±Q>-2K*J\*»). (24) 

Because rj and 7r° belong to a basis of the representation 
£7(1, 0, —1), we obtain from (13) 

A:A = 6. (25) 

The matrix element on the right-hand side of (24) now 
reduces to 

* i = < i 7 | [ l - K * ] V > . (26) 

We see from Table I I that t\ and TT° are the following 
linear combinations of eigenstates of18 K2: 

|„>=i{|2r=o>+A0|ir=i», 

I t is now easy to show that 

£ i = 0 (28) 

and, hence, the contributions of diagrams 3(a) and 
3 (b) to the matrix element (rj 17r°) cancel one another. 

18 The notation |iC=0), etc., corresponds to states with 
Kz=YK—0-i similarly | r=0) , etc., are states with Tz=YT=0. 
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Consider next diagrams 1 (a) and 1 (b): the interaction 
at the 7T° vertex is again J(fg), but at the 77 vertex it is 
now H(rjg) [Eq. (22)]. The interaction for p—>y and 
co —> 7 is proportional to J(sg) in Eq. (17). Notice that 
we indicate the emission of a spurion in both diagrams. 
This is done to emphasize the point that the corre­
sponding matrix element is (s|0|7r°), rather than 
<̂ 71017T°)3 where 0 is an operator in SU(3) space. 
Because of the particular structure of H{v)g), the only 
effect of the rj vertex is to introduce a factor 

N(g)=aYT+p$A:A+%YT+lYT*-V) (29) 

into 0. I t now follows that the total matrix element for 
diagrams 1(a) and 1(b) is 

Rt=(s\J(.sg)N(£)J(fg)\,t°). (30) 

Using Eqs. (15), (17), (25), and (29), we find 

i ? 2 = ( 4 / 9 ) < s | [ l - K 2 ] [ > F r + 5 ( l + i F T + i F r
2 - T 2 ) ] 

X [ l - K * ] | ^ > > . (31) 

From (27) and the fact 5 is the iT=0 member of an 
octet, it follows that 

^ 2 = ( 2 / 9 ) < ^ = 0 | [ 7 F T + 5 ( l + f F r + i F r
2 - - T 2 ) ] 

X{^\K=0)+\K=1)}. (32) 

The eigenstates of K spin can be re-expressed in terms 
of eigenstates of isotopic spin with18 T=0, 1 and 
T3 = YT=0: 

|2c=o>=j{^|r=i>+|r=o>}, 
|ic=i>=i{—|r=i>+\Qf|r=o». c j 

Substituting (33) into (32), we find that 

R2=0. (34) 

Therefore the contributions of diagrams 1(a) and 1(b) 
cancel one another. 

Diagrams 1(c), 1(d) and 2(a), 2(b) 

If we regard the vertices p<->was representing the 
processes 

f) <-> 7 <r-> 0) , (35) 

then, from considerations similar to those for diagrams 
1(a), 1(b), the total matrix element for diagrams 1(c) 
and 1(d) is 

Rs= (s\J(sg)N(g)P(g)J(sg)\s), (36) 

where 

P(g) = L-2yTz+d(-3Tz+^TzYT+V-K")2. (37) 

Just as the factor N(g) arises at the rj vertex because 
of the structure of H(yg), so the factor P(g) arises at 
the 7T° vertex as a consequence of the structure of 
H(v°g) [see Eq. (23)]. From (17), (25), and the fact 
that \s) is a state with K=0, we obtain 

Sg= (4/9)<2S:=0|iV(g)P(g)|2S:=0>. (38) 
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By means of (33) and the relation 

C~5r3Fr+2(L2-K2)][r,r3,Fr) 
=2v3(i-<22)(i-2r)2| (i-r),r8,F r) (39) 

for states of unitary octet (see Appendix), it is easy to 
show that 

jR 8 =0 . (40) 

The cancellation of diagrams 1(c) and 1(d) can be 
shown in a more general fashion. Let us suppose that 
there exists an effective interaction for o> <-» p, the 
origin of which is not relevant here; expressed in terms 
of the various spin-type operators, it takes the form 
(see Appendix) 

HM = g\:-ST,YT+2(V~K^g. (41) 

Diagrams 1 (c) and 1 (d) contain closed loops of vector 
mesons, and therefore the total matrix element for 
them will be proportional to the trace, in 527(3) space, 
of the product of the operators at each vertex, viz., 

Rt=Tr(N(g)H(o>p)P(g)) 

= E <a\N(g)\bW\H(»p)\c)(c\P(g)\G), (42) 
a,b,c 

where a, b, c denote states of the vector meson octet. 
The only nonvanishing matrix elements of H (cop) are,18 

from (39), 

(T=0\H(up)\T=l)=(T=l\H(wp)\T=0) = 2y/3. (43) 

Equations (29), (37), (39), and (43) can then be used to 
show that 

RA = 0. (44) 

Since 2° and A0 behave, under the transformations of 
517(3), in exactly the same way as p° and w, respectively, 
the same argument can be used to show that the con­
tributions of diagrams 2(a) and 2(b) to (T/ITT0) cancel 
one another. 

Diagrams 1(e), 1(f) and 2(c) , 2 (d) , 2(e) 

To evaluate the contributions of diagrams 1(e) and 
1 (f) to (rj | 7T°), we note that they also contain closed loops 
of vector mesons. Hence the sum of their matrix 
elements is proportional to 

R, = TrlN(g)J(g)P(g)J(g)J. (45) 

From the expression for J(g) in Eq. (11), we obtain 

* 5 = £ QaQb(a\N(g)\b){b\P(g)\a), (46) 
a,b 

where Qa and Qj, denote the electric charges of the 
states a and b of the vector-meson octet. From (25) 
and (29), we obtain 

<P±|iV(g)|p±>=-S, 

<2r*±|2\Tte) | ir*±)=±7+*8(l±3)> (47) 

<P*\N(g) !**> = (K*±\N(g)\K**)=0; 

similarly, from (37) and (39), we obtain 

( p ± | P ( g ) | p ± ) = T ( 2 T + 3 6 ) , (48) 

(K*±\P(g) \K*±) = T T + | 5 ( 3 T 3 ) . 

Equations (47) and (48) show that the contribution to 
R& from p-meson states is zero. To understand this 
result, we note that in diagram 1(e) the p mesons are 
emitted at the 77 vertex in a pure T=0 s tate; the ex­
change of a photon does not alter this state, and hence 
the p mesons cannot annihilate to form a T— 1 IT meson. 

I t is also apparent from (47) and (48) that the con­
tributions from i£*-meson states do not vanish for 
arbitrary values of 7, b. They will only do so when the 
nature of the strong interaction between pseudoscalar 
and vector mesons, as determined by the coupling 
constants 7, 5, in (22) and (23), is such as to cause an 
accidental cancellation. 

The same analysis can be used to show that, while 
the diagram 2(e) gives no contribution to (7717r°>, the 
contributions from 2 (c) and 2 (d) will only cancel each 
other for a particular choice of the SU(3) invariant 
strong interactions of pseudoscalar mesons and baryons. 

Diagrams 3(c) , 3 (d) , and 3(e) 

If the unitary octets of pseudoscalar and vector 
mesons are strongly coupled to the unitary singlet 
vector meson <p,13 then the transformation 77 —> 7r° can 
occur as in diagrams 3 (d) and 3 (e). These diagrams have 
different structures in 5Z7(3) space, and, therefore, they 
cannot cancel one another for reasons of unitary 
symmetry alone. 

The lowest order diagram involving the dissociation 
of the 77 into the <p vector meson and a photon is shown 
in Fig. 3(c). Since there are no other diagrams of the 
same order, there will be no cancellations. 

CONCLUSIONS 

The preceding discussion shows that, as a consequence 
of unitary symmetry, the only diagrams which can con­
tribute to (rj 17T°) are: 

(a) Figure 1(f) for the GSW model9; 
(b) Figures 2(c) and 2(d) for the BB model11; 
(c) Figures 3 (d) and 3 (e) for the model based on the 

strong interactions of the unitary singlet <p13; and 
(d) Figure 3(c) for the model based on the electro­

magnetic coupling of pseudoscalar mesons with <p. 

The most serious cancellation occurs in the GSW model, 
where only one out of six diagrams survives. In the 
BB model, two of the five possible diagrams do not 
cancel, and in the <^-meson models there are no cancella­
tions in lowest order. 

To make a choice between these models, it will be 
necessary first to find out how seriously the above 
results are disturbed by the strong interactions that 
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violate unitary symmetry; and secondly, to com­
pare their predictions for rj decay modes other than 
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APPENDIX 

(i) The following identity can be proved by means 
of the commutation relations in Eq. (1): 

-2A£A£- (Af-At)*- (A^-A/Y. (49) 

From (5), (7), and (8), it then follows that 

Similarly, 
AMix =-hA:A- Q+XQ2_K2 

Ax
2A^=iA:A+iYL+iYL^V. 

(50) 

(51) 

The identities in (50) and (51) are the analogs of 
Okubo's identity15 for ^4\3^43

x. 
(ii) Equation (39) is an ad hoc result which applies 

to the states forming a basis for the representation 
U(l, 0, —1) of 17(3). I t can be verified with the aid of 
Tables I and I I , but the author has not found a proof 
for it. 

(iii) For reasons of charge conjugation invariance, 
we require H(cop) to be of the form17 

p°co+wp°. 

Equation (41) is then a simple consequence of Eq. (39). 
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Theory of Spin-f Particles with Parity-Nonconserving Interactions* 

K. HlIDAf 

Argonne National Laboratory, Argonne y Illinois 
(Received 22 April 1963) 

It is shown that when interactions are not invariant under parity conjugation, both the self-mass term 
(—8fmp\f/) and the term (—a:$yprr6<N'/d%») are induced by the self-interaction of any spin-J particle with 
nonvanishing mass. (For simplicity T invariance is assumed.) When a2>l, the spin-! particle propagates 
in vacuum faster than the velocity of light. When a2—I, the observed mass should be zero. Therefore, it 
follows that a2<l for any spin-J particle with nonvanishing mass. Since l > a 2 > J implies the existence of 
ghost states, one must require a2 ̂  J. Although a has no physical meaning for free particles, as an example, 
it is also shown that it has a physical meaning when a charged particle is interacting with an external electro­
magnetic field. The value of a is estimated for the electron and the muon. 

1. INTRODUCTION AND SUMMARY 

TH E purpose of this work is to study the properties 
spin-J particles possess as a result of parity-

nonconserving interactions. To outline our discussions 
given here, we shall tentatively start from the Lagrangian 
density 

r d n 
7M Hwo \K*), (D 

for a spin-J field \j/ with mechanical mass wo, where L2 is 
not invariant under C or P transformation but is in­
variant under CP (or T) transformation. For simplicity 
we shall consider only CP-in variant interactions through­
out this paper. 

Since the free particle is interacting with its self-field, 
Li does not express the free part of the Lagrangian 
density for the dressed spin-f field considered. When all 

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

f On leave of absence from the Research Institute for Funda­
mental Physics, Kyoto University, Kyoto, Japan. 

interactions are renormalizable and invariant under 
both C and P transformations, as is well known, 
(Li—bmify) is the free part of the Lagrangian density 
for the dressed particle, where 8m is the self-energy of 
the particle. In our more general case it will be shown in 
Sec. 2 that, in addition to the self-mass term, the self-
interaction induces another term (—a\pyll'yz-d\l//dxll), 
where y£ = 1 and a is a real constant. This term should 
be added to the free part of the Lagrangian density and 
consequently be subtracted from L2, as the self-mass 
term is, to perform the renormalization consistently. 

To discuss the magnitude of the coefficient a of the 
parity-nonconserving counter term, consider the La­
grangian density 

(*)[• 
dxu 

ix \\p(x 0 

or the Dirac equation 

(2) 

(3) 


